QuesTek Innovations LLC recently announced that it was awarded $1.2 Million in funding from the U.S. Department of Energy鈥檚 Advanced Research Projects Agency-Energy (ARPA-E). The funding will be used to design and develop a novel materials solution for next-generation turbine blade alloys and compatible coating systems. QuesTek will design a system of functionally-graded Niobium-based alloys suitable for Additive Manufacturing and that will be capable of sustaining high temperature operation and thus increasing fuel efficiency.
Dr. Dana Frankel, QuesTek鈥檚 manager of design and product development, stated 鈥淒esigning a new turbine material with significantly better performance than current nickel-based superalloys is one of the biggest challenges facing the field of materials science today.鈥 She added, 鈥漌e鈥檙e excited for this opportunity to apply our proven computational materials design approach to develop a new refractory turbine alloy, paving the way for a step-change in turbine engine performance and efficiency.鈥
QuesTek will apply its Integrated Computational Materials Engineering-based models and extensive experience in design of superalloys, refractory alloys, high entropy alloys, and coatings to design a printable niobium-based multi-material alloy system. Concurrent design of material and component, with the goal of accelerating adoption of the designed materials into next-generation engines, will be achieved by teaming with leading turbine engine OEM Pratt & Whitney to define aerospace requirements, perform component design, and guide testing and qualification. Furthermore, the project team includes NASA Jet Propulsion Laboratory for AM process development, and the University of Minnesota for coating development.
QuesTek received this competitive award from ARPA-E鈥檚 ULtrahigh Temperature Impervious Materials Advancing Turbine Efficiency (ULTIMATE) program, to develop and demonstrate ultrahigh temperature materials that can operate in the high temperature and high stress environments of a gas-turbine blade.
This effort directly addresses the need to improve gas turbine efficiency for aerospace and energy applications (e.g., ground-based industrial gas turbines), critical for increasing fuel economy and decreasing carbon emissions. Engine efficiency is fundamentally determined by maximum cycle temperature, and thus scales directly with the operating temperature. However, current state-of-the-art superalloys have limited high-temperature stability.